Fast Polynomial Root Finder, Part Two

Fast Polynomial Root Finder, Part Two.
By Henrik Vestermark (hve@hvks.com)

Abstract:

We elaborated in the part one paper on how to find Polynomial roots and devised a modified
Newton method dealing efficiently with Polynomials with complex coefficients. This part two is
all about finding Polynomial roots when the polynomial coefficients are real. This paper is part
of a multi-series of papers on how to use the same framework to implement different root finder
methods.

Introduction:

In the first paper (part one), we developed a highly efficient and robust polynomial root-finder
based on the Newton method, specifically designed for complex polynomial coefficients.
Although many engineering problems involve polynomials with real coefficients, the core
methodology remains applicable. Limiting the coefficients to real numbers does add some
complexity to the implementation, but it also speeds up the calculations due to the reduced
computational overhead associated with real arithmetic compared to complex arithmetic.

Page | 1 15 October 2023

Fast Polynomial Root Finder, Part Two

Contents
Fast Polynomial Root Finder, Part TWO.c.cociiiiiiiiiiiice et 1
AADSTIACT: ..ttt ettt bttt e bt e e a bt e bt e e bt e e et e e bt e e hteebe e bt e enbeebeenateens 1
INEEOAUCTION: ...ttt sttt et b et ebt et e it e st e et e sbeenbesbeebeas 1
THE €aSY WY OUL....cccuiiiiiiiiieiee ettt ettt et e et e et e e s bt e e aseeessaeesssaeessseeessseesnssaessseeensseennns 2
The real or complex 100t Pitfall.ooouiiiiiiiiiicce e 2
WHRhaAt t0 MOIEY? ..ottt ettt e e bt e s ae e et e e b eessbeenbeesseasnseenseennnaans 3
The issue with Newton’s Method:.......cccuoiiiiiiiiiiie e 4
A suitable starting point for 100t fINAETS..........covviiieiiieeie e 4
Evaluation of the Polynomial at a compleX POINt..........ccceeriiiriiiiiieiienieeieeieeee e 4
A suitable StOpping Criterion fOr @ TOOL.cccuiiieiiiiieiieeiiie ettt e ree e saeesaaeesaeeesnreeens 5
Error in arithmetic OPeTrations:cccvieeiiieiiieeciie et iee et eae e e eeeaeeesbeeesaaeeenaeesnseeenns 6
A SIMPIE UPPET DOUNM: ...ttt ettt ettt et esaeeeabeebeesnseenseas 6
A DEtter UPPET DOUN.ccviiiiiiieiiie ettt e e st e e e saaeeeaeeessbeeesaeeenseeesnseeennes 6
Polynomial Deflation Strate@Ycccveeiiieeiiiiiciieeieeeiee ettt e e e e s e e saeeesaeeesseeessseeenns 7
The Implementation of K. Madsen Newton Algorithm............ccccovieviiiiiniininieniiieceiencecene 8
TRE Gt COAR..c.eintiiiiiee ettt ettt sttt et b ettt be et esbeetesaeens 9
25 21 4310 (T SRR SRPPSRPPR 14
2511010 (SISO PROUST PR 16
2511010 (SC T OO PROUSRPRRIP 17
COMCIUSION ...ttt ettt e bt e s at e et e esb e e eab e et e e sateeabeebeesmbeenbeesaeeeatean 19
RETETEICE ...ttt et sttt sttt et sb ettt e b e aesaeens 19
The easy Way out

Rather than storing polynomial coefficients in a std::vector<std::complex<double>>, we now use
a std::vector<double> now that the coefficients are real. A straightforward modification involves
wrapping each coefficient reference with complex<double>(coefficients[i]). While this approach
is functional, it overlooks the property that complex roots always appear in conjugate pairs,
resulting in unnecessary conversions and reduced efficiency.

The real or complex root Pitfall.

From my perspective, implementing a root finder for real coefficients presents more challenges
than one designed for complex coefficients. This is because each iteration may yield either one

Page | 2 15 October 2023

Fast Polynomial Root Finder, Part Two

real root or a pair of complex roots. Complex roots always appear as conjugate pairs and extra
caution is needed to avoid misclassifying a real root as two complex ones. If the algorithm veers
into the complex plane but returns a value close to the real axis, a test is required to confirm the
root's nature. Upon finding a root (designated as z), we check if P(z.real()) <= P(z). If true, we
accept z.real() as the real root and deflate the polynomial accordingly. Otherwise, we recognize z
and its complex conjugate as the roots, and proceed to deflate the polynomial using the quadratic
formula, reducing its degree by two. Aside from this, the issue of multiple roots, addressed in the
first paper, remains unchanged.

What to Modify?

Coefficients are now stored in a vector<double> as opposed to a vector<complex<double>>. It's
important to note that complex roots still appear as conjugate pairs.

From Part One, the Steps Include:
1. Finding an initial start point
Executing the Newton iteration, including polynomial evaluation via the Horner method
Calculating the final upper bound for the errors in evaluation P(z)
Polynomial deflation
Solving the quadratic equation

e

Ad 1) The initial point-finding algorithm remains unchanged, requiring no code modifications.

Ad 2) Although the algorithm stays the same, optimizing the Horner method for real coefficients
leads to fewer arithmetic operations. Code adjustments are needed for a more efficient
implementation.

Ad 3) The real coefficients simplify the upper bound error calculation. We switch from the
Grant-Hutchins algorithm to the Adam algorithm for increased efficiency.

Ad 4) Unlike with complex coefficients, where we find one root at a time, we now may find
either a single real root or a pair of complex roots. Consequently, the polynomial can be divided
by either a single real root or the quadratic form of the two complex roots.

Ad 5) The algorithm for solving the quadratic or linear polynomial differs, as it must account for
whether the roots are real or complex. This wasn't an issue when dealing solely with complex
roots.

Review Each Modified Version:
1. Horner Method
2. Upper Bound Error Calculation
3. Real or Conjugate Complex Deflation
4. Linear or Quadratic Solutions

Page | 3 15 October 2023

Fast Polynomial Root Finder, Part Two

The issue with Newton’s method:

In part one, we spent time detailing the issue with Newton’s method and also explained the
multiple root issues. To overcome this, we need to multiply the Newton step by a factor m,
leading to the modified Newton method.

P(xn)

Xn41 = Xn — Pr(xn)

Where m is the multiplicity of the roots, this is all well-known stuff. The challenge is how to find
m in real life.

A suitable starting point for root finders

We use the same algorithm as in part one, to find a suitable starting point and we just show the
modified function for Polynomial with real coefficients.

This algorithm computes a reasonable and suitable starting point for our root search.
// Compute the next starting point based on the polynomial coefficients
// A root will always be outside the circle from the origin and radius min
auto startpoint = [&](const vector<double>& a)

{

const size_t n = a.size() - 1;
double a® = log(abs(a.back()));
double min = exp((a® - log(abs(a.front()))) / static_cast<double>(n));

for (size_t i =1; i < n; i++)
if (al[il '= 0.0)
{
double tmp = exp((a® - log(abs(al[il))) / static_cast<double>(n - i));
if (tmp < min)
min = tmp;

}

return min * 0.5;

Evaluation of the Polynomial at a complex point.
Most of the root-finding methods require us to evaluate a Polynomial at some point.

To evaluate a polynomial P(z) were:
P(z)=an 2"+tan12"",...,a1 z+ao
We use the Horner [4] method given by the recurrence:
bn=an
bx=bk-1z+ax, k=n-1,...,0

P(z)=bo

Page | 4 15 October 2023

Fast Polynomial Root Finder, Part Two

However, to avoid the complex arithmetic overhead you can use an optimized method of Horner
using real arithmetic.

In the case of a polynomial P(z) with real coefficients evaluated at a complex point z we in
general are using Horner recurrence but in a special version using only real arithmetic:

7z=xHiy

p=-2x

q=x"+y’

br=an

bn-1=an-1 'pbn

br=ar-pbi+1-qbi+2, k=n-2,...,1
bo=ao-xbi-qb2

P(z)=bo+iybi

The last term of this recurrence is then the value of P(z). Horner method has long been
recognized as the most efficient way to evaluate a Polynomial at a given point. This algorithm

works for real coefficients at a real or complex point.
// Evaluate a polynomial with real coefficients a[] at a complex point z and
// return the result
// This is Horner's method of avoiding complex arithmetic
auto horner=[](const vector<double>& a, const complex<double> z)
{

const size_t n = a.size() - 1;

double p = -2.0 * z.real();
double q = norm(z);

double s = 0.0;

double r = al[0];

eval e;

for (size_t i =1; i < n; i++)

{
double t = al[il - p *r - q * s;
s = r;
r=t,;

}

e.z = z;

e.pz = complex<double>(a[n] + z.real() * r - q * s, z.imag() * r);
e.apz = abs(e.pz);
return e;

A suitable stopping criterion for a root.

In [8] they go over many different techniques to compute a suitable stopping criterion. See also
[1]. Many root finders can use the method used by Adams [5] or Hitching [6] to find a suitable
stopping criterion for polynomials with either real or complex coefficients.

When doing the iterative method, you will at some point need to consider what stopping criteria
you want to apply for your root finders. Since most iterative root finders use the evaluation of the

Page | 5 15 October 2023

Fast Polynomial Root Finder, Part Two

polynomial to progress it is only natural to continue our search until the evaluation of P(z) is
close enough to 0 to accept the root at that point.

Error in arithmetic operations:
J.H.Wilkinson in [7] has shown that the errors in performing algebraic operations are bound by:

e<VaB!, B is the base, and t is the precision (assuming round to nearest)
Notice V2p!"= B

For the Intel microprocessor series and the IEE754 standard for floating point operations = 2
and t=53 for 64bit floating point arithmetic or 2°3

A simple upper bound:
A simple upper bound can then be found using the above information for a polynomial with
degree n.

Polynomials
Number of operations: Real coefficient = Complex coefficients
Real point |ao| -2n-27%3 |ao| -4n-27%
Complex point |ao| -4n-2753 |ao| -6n-27%

A better upper bound.

In this category, we have among others Adams [5] and Grant & Hitchins [6] stopping criteria for
polynomials.

Polynomial root finders usually can handle polynomials with both real and complex coefficients
evaluated at a real or complex number. Since Grant-Hitchin's stopping criterion is for
Polynomials with complex coefficients, we will use Adams’ similar bound but for Polynomials
with real coefficients.

Using the algorithm for Polynomial with real coefficients a, evaluated at a complex point z,
using Horner’s method as shown in the previous section.

Adams [1] has shown that an error bound can be computed using the following recurrence:

7
én = |bn|§
ekzek_1|Z|+|bk|' k=n—1,,0
1
e = (4.5e, — 3.5(|by| + |b1112]) + |x||b1])e, where e = E,Bl‘t

There exist other methods that are also useful to consider, see [1]
// Calculate an upper bound for the rounding errors performed in a
// polynomial with real coefficient a[] at a complex point z.
// (Adam's test)
auto upperbound = [J(const vector<double>& a, const complex<double> z)

Page | 6 15 October 2023

Fast Polynomial Root Finder, Part Two

const size t n = a.size() - 1;

double p = -2.0 * z.real();
double q = norm(z);
double u = sqrt(q);
double s = 0.0;
double r = a[0];
double e = fabs(r) * (3.5 / u4.5);
double t;
for (size_t i =1; i < n; i++)
{
t=alil - p*r -q * s;
s = r;
r=t,;
e =u* e + fabs(t);
}
t = aln] + z.real() * r - q * s;
e =u=*e + fabs(t);
e = (4.5 *x e - 3.5 x (fabs(t) + fabs(r) * u) +
fabs(z.real())*fabs(r))*0.5*pow((double)_DBL_RADIX, —-DBL_MANT_DIG + 1);
return e;

Polynomial Deflation strategy

After we have found a root, we need to make a synthetic division of that root up in the current
Polynomial to reduce the polynomial degree and prepare to find the next root. The question then
arises do you use Forward or Backward Deflation?

Wilkinson [7] has shown that to have a stable deflation process you should choose forward
deflation if you find the roots of the polynomial in increasing magnitude and always deflate the
polynomial with the lowest magnitude root first and of course, the opposite backward deflation
when finding the roots with decreasing magnitude.

To do forward deflation we try to solve the equations starting with the highest coefficients an:

anz"+an 12"+ +a1z+ao=(bn-12" +bnaz" 2+ +b1z+bo)(z-R)

And R is the root.
Now solve it for b’s you get the recurrence:

bn-1=an
br=ak+1+R-bk+1, k=n-2,...,0

This simple algorithm works well for polynomials with real coefficients and real roots. A special
case is real coefficients with complex roots. A complex root and its complex conjugated root
will be the same as dividing by the polynomial P(Z) with 2" order polynomial of the two
complex conjugated roots (x+iy) and (x-iy) or (z>-2xz+(x*+y?)). Letting r=-2x and u= x’*+y>
You get:

P(Z)=Q(Z)(22+I‘Z+u)
where P(z)=anz"+an12" '+ -+a1z+ao
Q(2)=bn2z"?+by 32"+ +b1z+bo

Page | 7 15 October 2023

Fast Polynomial Root Finder, Part Two

The recurrence is then given by:
an=bn-2

an-1=bn-3+1bn2
ak-2=by-otrbg1+ubk, k=n-2,...,3
ar=bo+rbi+ub,

ai=rbo+ub;

a():ubo

Now solve it for b’s you get:
bn-2=an
bn-3=an-1-rbn-2

br=ak+2-rbx+1-ubk, k=n-4,...,0

// Real root forward deflation.

//
auto realdeflation = [&](vector<double>& a, const double x)
{

const size_t n = a.size() - 1;

double r=0.0;

for (size_t i = 0; i < n; i++)

al[il] = r =r * x + a[il;

a.resize(n); // Remove the highest degree coefficients.
H
// Complex root forward deflation for real coefficients
//
auto complexdeflation = [&](vector<double>& a, const complex<double> z)
{

const size_t n = a.size() - 1;

double r = -2.0 * z.real();

double u = norm(z);

all] -== r = a[oe];

for (int i = 2; i < n - 1; i++)

al[il = ali] - r » a[i - 1] - u * a[i - 2];

a.resize(n - 1); // Remove top 2 highest degree coefficients

}H

The Implementation of K. Madsen Newton Algorithm

We follow the same implementation for the Newton method as in part one and modify it only
where needed to accommodate real arithmetic when appropriate and call the modified functions
for finding the upper bound of error when using the Horner method to evaluate a polynomial at a

complex point, polynomial deflation of a real or complex root.

Page | 8 15 October 2023

Fast Polynomial Root Finder, Part Two
The C++ code

The C++ code below finds the Polynomial roots with Polynomial with real coefficients. The
same version for Polynomial coefficients with complex coefficients can be found in part one. See
[1] for details.

/*

dhkkkkkkkkhhhhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhhhhhhhhhhhhhhhhhrhhhhhhhx

Copyright (c) 2023
Henrik Vestermark
Denmark, USA

All Rights Reserved
This source file is subject to the terms and conditions of

Henrik Vestermark Software License Agreement which restricts the manner
in which it may be used.

* X Ok X Ok X X X * X

*
*hkkkkkkkkkkhkhkhkhkhkhkkhkhhhhkhhkkhkhhhhhhhhhkhhhhhhkkhhhhkhhhkhhhhhhhhhhhhhhkhhrhhkhhhhhhxkx

*/
/*

*hkkkkkkkkkkhhkhkhkhkhkhkkhkhhhkhkhkhkhkhhhhhhhhhkhhhhhhkkhhhhkhhhkhhhhhhhhhhhhhkhkhhrhhkhkhhhhxx

*

* Module name : Newton.cpp

* Module ID Nbr

* Description : Solve n degree polynomial using Newton's (Madsen) method
*

* Change Record

*

* \ersion Author/Date Description of changes
K ———————

* 01.01 HVE/2uUSep2023 Initial release

*

* End of Change Record

*

*/

// define version string
static char _VNEWTON_[] = "@(#)Newton.cpp 01.01 —- Copyright (C) Henrik Vestermark";

#include <algorithm>
#include <vector>
#include <complex>
#include <iostream>
#include <functional>

using namespace std;
constexpr int MAX_ITER = 50;

// Find all polynomial zeros using a modified Newton method

// 1) Eliminate all simple roots (roots equal to zero)

// 2) Find a suitable starting point

// 3) Find a root using Newton

// 4) Divide the root up in the polynomial reducing its order with one

// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the remaining one
or two roots are found by the direct formula

// Notice:

// The coefficients for p(x) is stored in descending order. coefficients[0] is a(n)x"n,
coefficients[1] is a(n-1)x"(n-1),..., coefficients[n-1] is a(l)x, coefficients[n] is a(0)
//

static vector<complex<double>> PolynomialRoots(const vector<double>& coefficients)
struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; };

const complex<double> complexzero(0.0); // Complex zero (0+i@)
size_t n; // Size of Polynomial p(x)

Page | 9 15 October 2023

Fast Polynomial Root Finder, Part Two

eval pz; // P(z)

eval pzprev; // P(zprev)

eval plz; // P'(z)

eval plzprev; // P'(zprev)

complex<double> z; // Use as temporary variable
complex<double> dz; // The current stepsize dz

int itercnt; // Hold the number of iterations per root

vector<complex<double>> roots; // Holds the roots of the Polynomial
vector<double> coeff(coefficients.size()); // Holds the current coefficients of P(z)

copy(coefficients.begin(), coefficients.end(), coeff.begin());

// Step 1 eliminate all simple roots

for (n = coeff.size() - 1; n > 0 && coeff.back() == 0.0; --n)
roots.push_back(complexzero); // Store zero as the root

// Compute the next starting point based on the polynomial coefficients
// A root will always be outside the circle from the origin and radius min
auto startpoint = [&](const vector<double>& a)
{
const size_t n = a.size() - 1;
double a® = log(abs(a.back()));
double min = exp((a®@ - log(abs(a.front()))) / static_cast<double>(n));

for (size_t i = 1; i < n; i++)
if (a[il != @.0)
{
double tmp = exp((a®@ - log(abs(al[il))) / static_cast<double>(n - i));
if (tmp < min)
min = tmp;

}

return min * 0.5;

3

// Evaluate a polynomial with real coefficients a[] at a complex point z and
// return the result

// This is Horner's method of avoiding complex arithmetic

auto horner=[](const vector<double>& a, const complex<double> z)

{
const size_t n = a.size() - 1;
double p = -2.0 * z.real();
double q = norm(z);
double s = 0.0;
double r = a[0];
eval e;
for (size_t i = 1; i < n; i++)
{
double t = al[i]l - p *r - q * s;
s =r;
r =t;
}
e.z = z;
e.pz = complex<double>(a[n] + z.real() * r — q * s, z.imag() * r);
e.apz = abs(e.pz);
return e;
b

// Calculate a upper bound for the rounding errors performed in a

// polynomial with real coefficient a[] at a complex point z.

// (Adam's test)

auto upperbound = [](const vector<double>& a, const complex<double> z)

const size t n = a.size() - 1;

double p = -2.0 * z.real();
double q = norm(z);

double u = sqrt(q);

double s = i

Page | 10 15 October 2023

Fast Polynomial Root Finder, Part Two

double r = a[0];
double e = fabs(r) * (3.5 / 4.5);
double t;
for (size t i = 1; i < n; i++)
{
t=alil - p*r -q * s;
s =r;
r =t;
e =u * e + fabs(t);
}
t = aln] + z.real() * r - q * s;
e =u * e + fabs(t);
e = (4.5 x e — 3.5 x (fabs(t) + fabs(r) * u) +
fabs(z.real()) * fabs(r)) * 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 1);
return e;

3

// Do Newton iteration for polynomial order higher than 2
for (; n > 2; —n)
{
const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times larger
than the previous step size
const complex<double> rotation = complex<double>(0.6, 0.8); // Rotation amount

double r; // Current radius

double rprev; // Previous radius

double eps; // The iteration termination value

bool stagel = true; // By default it start the iteration in stagel
int steps = 1; // Multisteps if > 1

vector<double> coeffprime;

// Calculate coefficients of p'(x)
for (int i = 0; i < n; i++)
coeffprime.push_back(coeff[i] * double(n - i));

// Step 2 find a suitable starting point z

rprev = startpoint(coeff); // Computed startpoint

z = coeff[n - 1] == 0.0 ? complex<double>(1.0) : complex<double>(-coeff[n] / coeff[n - 1]);
z *= complex<double>(rprev) / abs(z);

// Setup the iteration
// Current P(z)
pz = horner(coeff, z);

// pzprev which is the previous z or P(0)
pzprev.z = complex<double>(0);

pzprev.pz = coeffl[n];

pzprev.apz = abs(pzprev.pz);

// plzprev P'(0) is the P'(0)

plzprev.z = pzprev.z;

plzprev.pz = coeffl[n - 1]; // P'(0)
plzprev.apz = abs(plzprev.pz);

// Set previous dz and calculate the radius of operations.

dz = pz.z; // dz=z-zprev=z since zprev==

r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size allowed
// Preliminary eps computed at point P(0) by a crude estimation

eps = 2 * n * pzprev.apz * pow((double)_DBL_RADIX, —DBL_MANT_DIG);

// Start iteration and stop if z doesnt change or apz <= eps
// we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a root
for (itercnt = 0; pz.z + dz != pz.z & pz.apz > eps && itercnt < MAX_ITER; itercnt++)

// Calculate current P'(z)

plz = horner(coeffprime, pz.z);
if (plz.apz == 0.0) // P'(2)==0 then rotate and try again

Page | 11 15 October 2023

Fast Polynomial Root Finder, Part Two

dz *= rotation * complex<double>(Max_stepsize); // Multiply with 5 to get away
from saddlepoint
else
{
dz = pz.pz / plz.pz; // next dz
// Check the Magnitude of Newton's step
r = abs(dz);
if (r > rprev) // Large than 5 times the previous step size
{ // then rotate and adjust step size to prevent wild step size near P'(z) close
to zero
dz *= rotation * complex<double>(rprev/r);
r = abs(dz);
}
rprev = r * Max_stepsize; // Save 5 times the current step size for the next
iteration check of reasonable step size
// Calculate if stagel is true or false. Stagel is false if the Newton converge
otherwise true
= (plzprev.pz - plz.pz) / (pzprev.z - pz.z);
stagel (abs(z) / plz.apz > plz.apz / pz.apz / 4) || (steps != 1);

// Step accepted. Save pz in pzprev
pzprev = pz;

= pzprev.z - dz; // Next z
pz = horner(coeff, z); //ff = pz.apz;
steps = 1;

if (stagel)
{ // Try multiple steps or shorten steps depending if P(z) is an improvement or not
P(z)<P(zprev)
bool div2;
complex<double> zn;
eval npz;

zn = pz.z;
for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps)
{
if (div2 == true)
{ // Shorten steps
dz *= complex<double>(0.5);
zn = pzprev.z - dz;
}
else
zn —= dz; // try another step in the same direction

// Evaluate new try step
npz = horner(coeff, zn);
if (npz.apz >= pz.apz)
break; // Break if no improvement

// Improved => accept step and try another round of step
pz = npz;

if (div2 == true && steps == 2)
// To many shorten steps => try another direction and break
dz *= rotation;
= pzprev.z - dz;
pz = horner(coeff, z);
break;

}
}
else
{ // calculate the upper bound of error using Grant & Hitchins's test for complex
coefficients
// Now that we are within the convergence circle.
eps = upperbound(coeff, pz.z);

Page | 12 15 October 2023

Fast Polynomia

// Real root forward deflation.

//
auto realdeflation = [&](vector<double>& a, const double x)
{

const size_t n = a.size() - 1;

double r=0.0;

for (size t i = 0; i < n; i++)

alil = r =r *» x + a[il;

a.resize(n); // Remove the highest degree coefficients.
b
// Complex root forward deflation for real coefficients
//
auto complexdeflation = [&](vector<double>& a, const complex<double> z)
{

const size_t n = a.size() - 1;

double r = -2.0 * z.real();

double u = norm(z);

al[1] -==r * a[0e];

for (int i = 2; i < n - 1; i++)

alil = a[i] - r * a[i - 1] - u * a[i - 2];

a.resize(n - 1); // Remove top 2 highest degree coefficienst

b

// Check if there is a very small residue in the imaginary part by trying

Root Finder, Part Two

// to evaluate P(z.real). if that is less than P(z). We take that z.real() is a better root

than z.

z = complex<double>(pz.z.real(), 0.0);

pzprev = horner(coeff, z);

if (pzprev.apz <= pz.apz)

{ // real root
pz = pzprev;
// Save the root
roots.push_back(pz.z);
realdeflation(coeff, pz.z.real());

else

{ // Complex root
// Save the root
roots.push_back(pz.z);
roots.push_back(conj(pz.z));
complexdeflation(coeff, pz.z);
-—n;

}
} // End Iteration

// Solve any remaining linear or quadratic polynomial
// For Polynomial with real coefficients al],
// The complex solutions are stored in the back of the roots
auto quadratic = [&](const std::vector<double>& a)
{
const size_t n = a.size() - 1;
complex<double> v;

double r;
// Notice that a[@] is !=0 since roots=zero has already been handle
if (n == 1)
roots.push_back(complex<double>(-a[1] / a[0],0));
else

if (a[1] == 0.0)

{
r = -a[2] / a[oe];
if (r < 0)

Page | 13

15 October 2023

Fast Polynomial Root Finder, Part Two

}
else
{
}
}
else
{
r =
if (
{
else
{
}
}
}
return;
H
if (n > 0)
quadratic(co

return roots;

Example 1.

r = sqrt(-r);

v = complex<double>(0, r);
roots. push_back(v);
roots.push_back(conj(v));

r = sqrt(r);
roots.push_back(complex<double>(r));
roots.push_back(complex<double>(-r));

1.0 - 4.0 * a[e] = a[2] / (a[1] = a[11);
r < 0)

v = complex<double>(-a[1] / (2.0 * a[0]), all] * sqrt(-r) / (2.0 * a[0]1));

roots.push_back(v);
roots.push_back(conj(v));

v = complex<double>((-1.0 - sqrt(r)) * al[l]l / (2.0 * a[0]1));
roots. push_back(v);

v = complex<double>(al[2] / (a[0] * v.real()));
roots.push_back(v);

eff);

Here is an example of how the above source code is working. Notice the statistics detailing the

amount spent in sta

ge 1 and stage 2 and how many rotation was needed.

For the real Polynomial:
+1x74-10x"3+35x"2-50x+24

Start Newton Iteration

for Polynomial=+1x"4-10x"3+35x"2-50x+24

Stage 1=>Stop Condition. |f(z)|<2.13e-14
Start :2z[1]=0.2 dz=2.40e-1 |f(z)|=1.4e+1

Iteration: 1
Newton Step:

z[1]=0.6 dz=-3.98e-1 |f(z)|=3.9e+0

Function value decrease=>try multiple steps in that direction
Try Step: z[1]=1 dz=-3.98e-1 |f(z)|=2.0e-1

: Improve

d=>Continue stepping

Try Step: z[1]=1 dz=-3.98e-1 |f(z)|=9.9e-1
: No improvement=>Discard last try step

Iteration: 2
Newton Step:

z[1]=1 dz=3.87e-2 |f(z)|=1.6e-2

Function value decrease=>try multiple steps in that direction
Try Step: z[1]=1 dz=3.87e-2 |f(z)|=2.7e-1
: No improvement=>Discard last try step

Page | 14

15 October 2023

Fast Polynomial Root Finder, Part Two

Iteration: 3
Newton Step: z[1]=1 dz=-2.62e-3 |f(z)|=7.6e-5
In Stage 2=>New Stop Condition: |f(z)|<2.18e-14
Iteration: 4
Newton Step: z[1]=1 dz=-1.26e-5 |f(z)|=1.8e-9
In Stage 2=>New Stop Condition: |f(z)|<2.18e-14
Iteration: 5
Newton Step: z[1]=1 dz=-2.93e-10 |f(z)|=3.6e-15
In Stage 2=>New Stop Condition: |f(z)|<2.18e-14
Stop Criteria satisfied after 5 Iterations
Final Newton z[1]=1 dz=-2.93e-10 |f(z)|=3.6e-15
Alteration=0% Stage 1=40% Stage 2=60%
Deflate the real root z=1.0000000000000007
Start Newton Iteration for Polynomial=+1x"3-9x"2+25.999999999999993x-23.99999999999999
Stage 1=>Stop Condition. |f(z)|<1.60e-14
Start :2z[1]=0.5 dz=4.62e-1 |f(z)|=1.4e+1
Iteration: 1
Newton Step: z[1]=1 dz=-7.54e-1 |f(z)|=3.9e+0
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=2 dz=-7.54e-1 |f(z)|=6.4e-2
: Improved=>Continue stepping
Try Step: z[1]=3 dz=-7.54e-1 |f(z)|=2.6e-1
: No improvement=>Discard last try step
Iteration: 2
Newton Step: z[1]=2 dz=-2.95e-2 |f(z)|=2.7e-3
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=2 dz=-2.95e-2 |f(z)|=5.4e-2
: No improvement=>Discard last try step
Iteration: 3
Newton Step: z[1]=2 dz=-1.32e-3 |f(z)|=5.3e-6
In Stage 2=>New Stop Condition: |f(z)|<1.42e-14
Iteration: 4
Newton Step: z[1]=2 dz=-2.63e-6 |f(z)|=2.1e-11
In Stage 2=>New Stop Condition: |f(z)|<1.42e-14
Iteration: 5
Newton Step: z[1]=2 dz=-1.04e-11 |f(z)|=3.6e-15
In Stage 2=>New Stop Condition: |f(z) |<1.42e-14
Stop Criteria satisfied after 5 Iterations
Final Newton z[1]=2 dz=-1.04e-11 |f(z)|=3.6e-15
Alteration=0% Stage 1=40% Stage 2=60%
Deflate the real root z=2.0000000000000036
Solve Polynomial=+1x"2-6.9999999999999964x+11.999999999999975 directly
Using the Newton Method, the Solutions are:
X1=1.0000000000000007
X2=2.0000000000000036
X3=4.000000000000011
X4=2.999999999999986

Page | 15 15 October 2023

Fast Polynomial Root Finder, Part Two

Example 2.

The same example just with a double root at x=1. We see that each step is a double step in line
with a multiplicity of 2 for the first root. Notice that for a multiple root it spend all the search in
stagel and 0% in stage 2.

For the real Polynomial:
+1xM4-9x"3+27xM2-31x+12
Start Newton lteration for Polynomial=+1x"4-9x"3+27x"2-31x+12
Stage 1=>Stop Condition. |f(z)|<1.07e-14
Start :2z[1]=0.2 dz=1.94e-1 |f(z)|=6.9e+0
Iteration: 1
Newton Step: z[1]=0.5 dz=-3.23e-1 |f(z)|=2.0e+0
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=0.8 dz=-3.23e-1 |f(z)|=1.8e-1
: Improved=>Continue stepping
Try Step: z[1]=1 dz=-3.23e-1 |f(z)|=1.4e-1
: Improved=>Continue stepping
Try Step: z[1]=1 dz=-3.23e-1 |f(z)|=8.9e-1
: No improvement=>Discard last try step
Iteration: 2
Newton Step: z[1]=1 dz=8.71e-2 |f(z)|=3.1e-2
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=1dz=8.71e-2 |f(z)|=9.6e-4
: Improved=>Continue stepping
Try Step: z[1]=0.9 dz=8.71e-2 |f(z)|=6.5e-2
: No improvement=>Discard last try step
Iteration: 3
Newton Step: z[1]=1 dz=-6.27e-3 |f(z)|=2.4e-4
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=1 dz=-6.27e-3 |f(z)|=2.6e-8
: Improved=>Continue stepping
Try Step: z[1]=1 dz=-6.27e-3 |f(z)|=2.3e-4
: No improvement=>Discard last try step
Iteration: 4
Newton Step: z[1]=1 dz=-3.28e-5 |f(z)|=6.5e-9
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=1 dz=-3.28e-5 |f(z)|=0
: Improved=>Continue stepping
Try Step: z[1]=1 dz=-3.28e-5 |f(z)|=6.5e-9
: No improvement=>Discard last try step
Stop Criteria satisfied after 4 Iterations
Final Newton z[1]=1 dz=-3.28e-5 |f(z)|=0
Alteration=0% Stage 1=100% Stage 2=0%
Deflate the real root z=0.9999999982094424
Start Newton lteration for Polynomial=+1x”3-8.000000001790557x/2+19.000000012533903x-
12.000000021486692
Stage 1=>Stop Condition. |f(z)|<7.99e-15
Start :2z[1]=0.3 dz=3.16e-1 |f(z)|=6.8e+0
Iteration: 1
Newton Step: 2z[1]=0.8 dz=-4.75e-1 |f(z)|=1.5e+0
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=1 dz=-4.75e-1 |f(z)|=1.3e+0

Page | 16 15 October 2023

Fast Polynomial Root Finder, Part Two

: Improved=>Continue stepping
Try Step: z[1]=2 dz=-4.75e-1 |f(z)|=2.1e+0
: No improvement=>Discard last try step
Iteration: 2
Newton Step: 2z[1]=0.9 dz=3.54e-1 |f(z)|=5.7e-1
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=0.6 dz=3.54e-1 |f(z)|=3.7e+0
: No improvement=>Discard last try step
Iteration: 3
Newton Step: z[1]=1 dz=-8.28e-2 |f(z)|=3.6e-2
In Stage 2=>New Stop Condition: |f(z)|<6.64e-15
Iteration: 4
Newton Step: z[1]=1 dz=-5.87e-3 |f(z)|=1.7e-4
In Stage 2=>New Stop Condition: |f(z) |<6.66e-15
Iteration: 5
Newton Step: z[1]=1 dz=-2.88e-5 |f(z)|=4.1e-9
In Stage 2=>New Stop Condition: |f(z)|<6.66e-15
Iteration: 6
Newton Step: z[1]=1 dz=-6.90e-10 |f(z)|=8.9e-16
In Stage 2=>New Stop Condition: |f(z)|<6.66e-15
Stop Criteria satisfied after 6 Iterations
Final Newton z[1]=1 dz=-6.90e-10 |f(z)|=8.9e-16
Alteration=0% Stage 1=33% Stage 2=67%
Deflate the real root z=1.0000000017905577
Solve Polynomial=+1x"2-6.999999999999999x+12 directly
Using the Newton Method, the Solutions are:
X1=0.9999999982094424
X2=1.0000000017905577
X3=3.999999999999995
X4=3.0000000000000036

Example 3.
A test polynomial with both real and complex conjugated roots.

For the real Polynomial:
+1x74-8x"3-17x"2-26x-40
Start Newton lteration for Polynomial=+1x"4-8x"3-17x"2-26x-40
Stage 1=>Stop Condition. |f(z)|<3.55e-14
Start :2z[1]=-0.8 dz=-7.67e-1 |f(z)|=2.6e+1
Iteration: 1
Newton Step: z[1]=-2 dz=1.65e+0 |f(z)|=7.0e+1
Function value increase=>try shorten the step
Try Step: z[1]=-2 dz=8.24e-1 |f(z)|=3.1e+0
: Improved=>Continue stepping
Try Step: z[1]=-1dz=4.12e-1 |f(z)|=1.8e+1
: No improvement=>Discard last try step
Iteration: 2
Newton Step: z[1]=-2 dz=6.27e-2 |f(z)|=1.5e-1
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=-2 dz=6.27e-2 |f(z)|=3.7e+0
: No improvement=>Discard last try step
Iteration: 3

Page | 17

15 October 2023

Fast Polynomial Root Finder, Part Two

Newton Step: z[1]=-2 dz=-2.74e-3 |f(z)|=2.9e-4
In Stage 2=>New Stop Condition: |f(z)|<1.91e-14
Iteration: 4
Newton Step: z[1]=-2 dz=-5.51e-6 |f(z)|=1.2e-9
In Stage 2=>New Stop Condition: |f(z)|<1.91e-14
Iteration: 5
Newton Step: z[1]=-2 dz=-2.22e-11 |f(z)|=0
In Stage 2=>New Stop Condition: |f(z)|<1.91e-14
Stop Criteria satisfied after 5 Iterations
Final Newton z[1]=-2 dz=-2.22e-11 |f(z)|=0
Alteration=0% Stage 1=40% Stage 2=60%
Deflate the real root z=-1.650629191439388
Start Newton Iteration for Polynomial=+1x"3-9.650629191439387x"2-1.0703897408530487x-
24.233183447530717
Stage 1=>Stop Condition. |f(z)|<1.61e-14
Start :2z[1]=-0.8 dz=-7.92e-1 |f(z)|=3.0e+1
Iteration: 1
Newton Step: z[1]=1 dz=-1.86e+0 |f(z)|=3.5e+1
Function value increase=>try shorten the step
Try Step: z[1]=0.1 dz=-9.30e-1 |f(z)|=2.5e+1
: Improved=>Continue stepping
Try Step: z[1]=-0.3 dz=-4.65e-1 |f(z)|=2.5e+1
: No improvement=>Discard last try step
Iteration: 2
Newton Step: z[1]=-7 dz=6.71e+0 |f(z)|=7.2e+2
Function value increase=>try shorten the step
Try Step: z[1]=-3 dz=3.35e+0 |f(z)|=1.5e+2
: Improved=>Continue stepping
Try Step: z[1]=-2 dz=1.68e+0 |f(z)|=4.9e+1
: Improved=>Continue stepping
: Probably local saddlepoint=>Alter Direction: z[1]=(-0.4-i0.7) dz=(5.03e-1+i6.71e-1) |f(z)|=2.1e+1
Iteration: 3
Newton Step: z[1]=(0.3-i2) dz=(-6.86e-1+i1.17e+0) |f(z)|=1.9e+1
Function value decrease=>try multiple steps in that direction
Try Step: z[1]=(1-i3) dz=(-6.86e-1+i1.17e+0) |f(z) |=8.4e+1
: No improvement=>Discard last try step
Iteration: 4
Newton Step: z[1]=(-0.09-i1) dz=(4.11e-1-i3.44e-1) |f(z)|=3.0e+0
In Stage 2=>New Stop Condition: |f(z)|<1.29e-14
Iteration: 5
Newton Step: z[2]=(-0.18-i1.5) dz=(8.71e-2+i4.72e-2) |f(z)|=1.1le-1
In Stage 2=>New Stop Condition: |f(z)|<1.36e-14
Iteration: 6
Newton Step: z[3]=(-0.175-i1.55) dz=(-3.24e-3+i1.00e-3) |f(z)|=1.3e-4
In Stage 2=>New Stop Condition: |f(z)|<1.36e-14
Iteration: 7
Newton Step: z[6]=(-0.174685-i1.54687) dz=(1.28e-6+i3.82e-6) |f(z)|=1.8e-10
In Stage 2=>New Stop Condition: |f(z)|<1.36e-14
Iteration: 8
Newton Step: z[12]=(-0.174685404280-i1.54686888723) dz=(-2.07e-12-i5.33e-12) |f(z)|=3.6e-15
In Stage 2=>New Stop Condition: |f(z)|<1.36e-14
Stop Criteria satisfied after 8 Iterations
Final Newton z[12]=(-0.174685404280-i1.54686888723) dz=(-2.07e-12-i5.33e-12) |f(z)|=3.6e-15

Page | 18 15 October 2023

Fast Polynomial Root Finder, Part Two

Alteration=13% Stage 1=38% Stage 2=63%
Deflate the complex conjugated root z=(-0.17468540428030604-i1.5468688872313963)
Solve Polynomial=+1x-10 directly
Using the Newton Method, the Solutions are:
X1=-1.650629191439388
X2=(-0.17468540428030604-i1.5468688872313963)
X3=(-0.17468540428030604+i1.5468688872313963)
X4=10

Conclusion

We have presented a refined Newton method, building upon the framework established in part
one, to efficiently and stably find roots of polynomials with real coefficients. While Part One
focused on polynomials with complex coefficients—where roots could still be real—this second
part delves into polynomials with real coefficients. Part Three will explore adjustments needed
for higher-order methods, such as Halley's method, while Part Four will demonstrate the ease of
integrating alternative methods like Laguerre's into the existing framework. A web-based
polynomial solver showcasing these various methods is available for further exploration and can
be found on Polynomial roots that demonstrate many of these methods in action.

Reference

—

H. Vestermark. A practical implementation of Polynomial root finders. Practical

implementation of Polynomial root finders vs 7.docx (www.hvks.com)

Madsen. A root-finding algorithm based on Newton Method, Bit 13 (1973) 71-75.

A. Ostrowski, Solution of equations and systems of equations, Academic Press, 1966.

Wikipedia Horner’s Method: https://en.wikipedia.org/wiki/Horner%27s_method

Adams, D A stopping criterion for polynomial root finding.

Communication of the ACM Volume 10/Number 10/ October 1967 Page 655-658

6. Grant, J. A. & Hitchins, G D. Two algorithms for the solution of polynomial equations to
limiting machine precision. The Computer Journal Volume 18 Number 3, pages 258-264

7. Wilkinson, J H, Rounding errors in Algebraic Processes, Prentice-Hall Inc, Englewood
Cliffs, NJ 1963

8. McNamee, J.M., Numerical Methods for Roots of Polynomials, Part I & II, Elsevier,
Kidlington, Oxford 2009

9. H. Vestermark, “A Modified Newton and higher orders Iteration for multiple roots.”,
www.hvks.com/Numerical/papers.html

10. M.A. Jenkins & J.F. Traub, ”A three-stage Algorithm for Real Polynomials using

Quadratic iteration”, SIAM J Numerical Analysis, Vol. 7, No.4, December 1970.

ol

Page | 19 15 October 2023

